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Abstract

Enabling robots to execute novel manipulation tasks zero-shot is a central goal in robotics. Most
existing methods assume in-distribution tasks or rely on fine-tuning with embodiment-matched
data, limiting transfer across platforms. We present NovaFlow, an autonomous manipulation
framework that converts a task description into an actionable plan for a target robot without any
demonstrations. Given a task description, NovaFlow synthesizes a video using a video generation
model and distills it into 3D actionable object flow using off-the-shelf perception modules. From
the object flow, it computes relative poses for rigid objects and realizes them as robot actions via
grasp proposals and trajectory optimization. For deformable objects, this flow serves as a tracking
objective for model-based planning with a particle-based dynamics model. By decoupling task
understanding from low-level control, NovaFlow naturally transfers across embodiments. We
validate on rigid, articulated, and deformable object manipulation tasks using a table-top Franka
arm and a Spot quadrupedal mobile robot, and achieve effective zero-shot execution without
demonstrations or embodiment-specific training. Project website: https://novaflow.lhy.xyz/.
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Figure 1: NovaFlow manipulation framework. A generated task-solving video is distilled into a 3D actionable
object flow aligned with the robot’s observation. From this flow, reference end-effector trajectories are computed and
tracked, enabling robots to manipulate rigid, articulated, and deformable objects across different embodiments without
demonstrations.
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NovaFlow : Zero-Shot Manipulation via Actionable Flow from Generated Videos

1. Introduction

A long-standing goal in robotics is to build general-
ist robots capable of performing a wide variety of
manipulation tasks in unstructured environments
without task-specific training. Many believe that
Vision-Language-Action (VLA) models [1-4] can
achieve this generalization, following the success
of Large Language Models (LLMs) [5-7], Vision-
Language Models (VLMs) [8, 9], and video gener-
ation models [10-13] that learn from vast, internet-
scale datasets. However, directly applying this
paradigm to robotics creates a significant data bot-
tleneck. VLA models, for their end-to-end train-
ing, require vast quantities of robot-specific vision-
language-action data that is difficult and expensive
to collect, a stark contrast to the readily available
web-scale data used for LLMs and VLMs.

An alternative path towards generalist robots lies
in creating modular systems that decompose the
problem into task understanding and robot con-
trol. These systems leverage powerful pretrained
models [14, 15] and traditional robotic engineering
methods like inverse kinematics (IK) [16] or model
predictive control [17] to bypass large-scale robot
data collection, a promising strategy for closing the
data gap [18]. For instance, some approaches use
large language or vision-language models to gen-
erate high-level plans, affordance maps, or seman-
tic keypoints to guide the robot [19-22]. While
these methods successfully offload semantic reason-
ing to large models, translating this understand-
ing into physical actions remains an open prob-
lem. The control policy, for instance, relies on
either predefined skill primitives (e.g., opening a
drawer) [15, 23] or learned skills from real-world
demonstrations [14, 19, 20, 22, 24, 25]. This approach
reintroduces the data bottleneck and limits general-
izability and scalability.

To overcome these limitations, we propose No-
vaFlow, a novel framework that breaks the depen-
dency on robot data to achieve autonomous manip-
ulation. Our key insight is to repurpose large-scale
pretrained video generation models as a source of com-
monsense task understanding and implicit physical
knowledge for deriving object motion. We hypoth-
esize that by training on internet-scale video data,
these models have already captured a rich, gener-
alizable understanding of task and object dynamics
that can be leveraged for unseen objects, environ-
ments, and tasks. This separates our approach from

prior work that relies on self-collected data to train
smaller, specialized video models [26-29]. To trans-
late this understanding from video to robot actions,
we leverage actionable 3D object flow, a generalized
atomic representation of object motion.

NovaFlow generates robot actions from a single
visual observation and task description and consists
of two components: a flow generator and a flow
executor. The flow generator leverages large-scale
video generation models to distill generalized knowl-
edge of object motion into an actionable 3D object
flow. This is achieved using a pipeline of pretrained
perception modules for monocular depth estima-
tion [30], 3D point tracking [31], and object ground-
ing [32, 33]. The flow executor then translates this
3D flow into robot actions using IK and trajectory
optimization, requiring no robot-specific data or task
training. To handle diverse object types, the execu-
tor uses correspondence-based model-free tracking
for rigid and articulated objects [34] and dynamic
model-based planning with particle models for de-
formable objects [35, 36], using the flow as a tracking
objective.

In summary, we present NovaFlow, an object-
centric and embodiment-agnostic framework for
autonomous manipulation that requires no task-
specific tuning. We demonstrate its efficacy across
both tabletop and mobile manipulator tasks involv-
ing rigid, articulated, and deformable objects. At
its core, we introduce an actionable 3D object flow
representation that is key to its generalizability and
achieve state-of-the-art zero-shot performance on a
range of real-world tasks, outperforming previous
demonstration-free and data-dependent methods.

2. Related Work

We approach as
demonstration-free if it does not require col-
lecting any robot-specific data or task-specific
training. While LLMs and VLMs have shown
promising zero-shot capabilities, their embodied
successors, VLA models, have yet to achieve the
same level of generalization. Recent VLAs [37, 38]
still rely on data collection to generalize on novel
embodiments or camera views. This is due to the
data bottleneck created by the end-to-end training
nature of VLAs. To address this, we decouple the
task understanding (Sec. 2.1) and robot control,
bridged by an intermediate representation, the 3D
object flow (Sec. 2.2).

define an zero-shot or
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Figure 2: Flow generator pipeline. Given an initial image and a task prompt, a video model is used to generate
a video of the plausible object motion. This video is then processed by pretrained perception modules to distill an
actionable 3D object flow. This involves (1) lifting the 2D video to 3D using monocular depth estimation, (2) calibrating
the estimated depth against the initial depth, (3) tracking the dense per-point motion using 3D point tracking, and (4)
extracting the object-centric 3D flow via object grounding.

2.1. Video-based Manipulation

Prior work has utilized video generation models for
manipulation. Video can be a generalized repre-
sentation of motion, which serves as a visual in-
struction for robots to execute tasks.
trains an inverse dynamics model [26, 39] or a pol-
icy [28, 40, 41] to convert the generated video into
robot actions. Other work tracks the 6D pose of the
end-effector [27] or the object [16]. While promising,
these approaches require extensive robot-specific
data to train a domain-specific model tailored to a
particular embodiment, environment, or task [26—
28, 39-41].

A key limitation of many video-based manipu-
lation methods is their reliance on embodiment-
dependent action generation, which hinders cross-
embodiment generalization. To address this, object-
centric approaches have been proposed. For example,
a concurrent work [16] extracts 6D poses from the
generated video for demonstration-free manipula-
tion, which is object-centric and generalizes across
embodiments. However, it is model-based and relies
on a rigid-body assumption, limiting its applicabil-
ity to a broader class of objects. To achieve greater
object generalization, a shift towards model-free rep-
resentations is essential, which then motivates the
adoption of flow-based approaches.

Some work

2.2. Flow-based Manipulation

Flow describes object motion by tracking the dis-
placement of 2D pixels or 3D points between video
frames. This offers a more generalizable represen-
tation of object dynamics compared to 6D pose, as
it is inherently model-free and makes no assump-
tions about object rigidity. Recent work has shown

success in using flow for manipulation [24, 29, 42—
45]. However, these methods require robot data or
task-specific training for either the flow generator or
the executor [24, 29, 42-46]. To achieve greater gen-
eralization for zero-shot manipulation, Chen et al.
[47] and Zhi et al. [48] train a flow generator on a
collection of large-scale human egocentric datasets.
While making a great step towards generalization,
we empirically find that the generalizability of this
approach [47] (understanding of in-the-wild object
motion) is still not as good as the commonsense mo-
tion knowledge from pretrained video models.

3. NovaFlow

NovaFlow enables robots to autonomously solve a
wide variety of manipulation tasks by leveraging pre-
trained video generation models, thus eliminating
the need for demonstrations or task-specific tuning.
Since raw video pixels cannot be directly used by a
robot’s controller or model-based planner, NovaFlow
handles this challenge by distilling the video’s im-
plicit commonsense knowledge of motion into a
more actionable, intermediate representation: 3D
object flow. The proposed pipeline consists of two
core components: a flow generator (Fig. 2) that ex-
tracts the actionable 3D object flow from the gener-
ated video, and a flow executor (Fig. 3) that translates
this flow into robot actions. The entire pipeline is
demonstration-free and embodiment-agnostic, re-
quiring no robot-specific data or training before task
execution.

3.1. Flow Generator

The primary objective of the flow generator is to
translate a high-level task description into a struc-
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tured, actionable flow for the robot. The standard
input to the generator is the task description, which
involves an initial RGB-D image pair {I, D} captured
from the robot’s perspective (with known camera
intrinsics) and a natural language instruction, 1, de-
scribing the desired task. For tasks requiring greater
precision, an optional goal image, I, can also be
provided, either specified by the user [45, 49, 50]
or generated by an image editing model with the
standard input [51]. Based on the given input, the
generator’s goal is to produce a 3D object flow across
T frames for M object keypoints, F* € RT*M<3,

The flow generator synthesizes a video using the
task description and then distills an actionable 3D
object flow from the generated video with a pipeline
of pre-trained perception modules. The full process
involves five main steps: (1) generating the video
from the initial image and text prompt, (2) lifting
the 2D video to 3D, (3) calibrating the estimated
depth, (4) tracking dense per-point 3D motion, and
(5) extracting the final object-centric 3D flow.

3.1.1. Video Generation

Given the initial image I and language prompt 1,
a video generation model produces a video V =
{1.,1,, ..., 17} of T frames, known as image-to-video
(I2V) generation. If a goal image I, is provided, we
use first-last-frame-to-video (FLF2V) generation in-
stead.

3.1.2. Monocular Depth Estimation

To obtain 3D motion information, we lift the gener-
ated 2D video into 3D space. We apply a monocular
video depth estimation model to V, which processes
the video frame-by-frame to yield a sequence of es-

timated metric depth maps D = {]51, D,,..., ﬁT}.

3.1.3. Depth Calibration

The depth maps D obtained in the last step have a
key limitation: the monocular depth estimation pro-
cess is inherently ill-posed and often creates metric
outputs with systematic scaling errors, especially
on generated videos. This can hinder manipulation
tasks that require accurate spatial alignment. To cor-
rect for this, we calibrate the entire estimated depth
sequence D by anchoring it to the initial ground-
truth depth map. This calibration leverages the ob-
servation that estimated depth, while globally in-
accurate, is often locally consistent. We compute
a scaling factor between the median depth of the
first estimated frame D; and the initial ground-truth

depth map D. While other methods exist, e.g., fitting
an affine transformation [16], we find this median
scaling factor method to be more stable.

3.1.4. 3D Point Tracking

With the generated video and the calibrated depth,
we extract dense per-point 3D motion. We employ
a 3D point tracking model, which takes the camera
intrinsics, video V, the calibrated depth ]3, and a set
of query points Q = {qy, ..., qu} evenly sampled on
the first frame as input. The model outputs a set of
3D trajectories P = {p,..., p},}_,, where p! is the
3D position of the i-th query point at timestep ¢.

3.1.5. Object Grounding

The dense 3D trajectories P capture the motion
of the entire scene. To derive an actionable plan,
we must now ground this motion by isolating only
the trajectories belonging to the target objects. We
achieve this by employing a pipeline that combines
an open-vocabulary object detector with a video
segmentation model, which produces a sequence
of masks, M = {my,..., mr}, that segment the ob-
ject across the entire video. Lastly, by applying
these masks, we filter the dense trajectories P to
distill the actionable 3D object flow, F = {f/ | i =
1,...,K; t = 1,..., T}. This final output represents
the K keypoints that remain consistently tracked on
the object’s surface.

We conclude object grounding with a rejection
sampling step to filter out hallucinations, such as
generative artifacts and implausible motions, that
may be unavoidably introduced by the video gen-
eration model (Fig. 4). Here, we use a VLM to val-
idate and select the most plausible generated flow.
Specifically, we generate N video candidates simul-
taneously and obtain N corresponding object flow
images by back-projecting object flow F to the first
frame of each video. We then mark each flow im-
age using its ID and pass it into a VLM along with
its task description to select the most plausible one.
We empirically find that rejecting the flow image is
more effective than rejecting the concatenated raw
video images [16], since the flow images, explicitly
visualizing motion, are a more grounded and direct
input for VLMs to reason and understand.

3.2. Flow Executor

The flow executor is responsible for translating the
abstract 3D object flow F as planned trajectories
into a sequence of executable robot actions A =
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Figure 3: Flow executor pipeline. The initial end-effector pose is determined from grasp proposal candidates. Robot
trajectories are then planned based on the actionable flow considering costs and constraints, and subsequently tracked
by the robots.

@ | Help me evaluate which flow image is the most
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corner of the image.

The flow represents the object motion from one place to
the other place. The task instruction is {task_instruction}.

’ Images to Reject:
Image 44: This image is unreasonable. There is
significant, noisy flow on the background to the left of the

Reasonable Images:
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Figure 4: Rejection sampling for flow generator. We
generate multiple video candidates in parallel and create
the object flow image for each by back-projecting its ob-
ject flow, F, onto the initial frame. A VLM (in our case,
Google Gemini) evaluates all the flow images to select the
most plausible video candidate.

{aj,ay,...,ar}over T timesteps. The input actionable
flow serves as an intermediate representation that de-
scribes the desired trajectories of K points on the tar-
get object over T timesteps, carrying the high-level
task understanding from pre-trained video models.
Here, we present an open-loop planner that can be
extended to a closed-loop tracking system by incor-
porating live object trackers. The current executor
pipeline can handle two main classes of objects: rigid
(including articulated objects, treated as part-wise
rigid) and deformable.

3.2.1. Rigid Object Manipulation

For rigid body manipulation, the 3D flow of the key-
points, F, can be used to estimate the rigid trans-
forms, (R, t), of the object across frames in a model-
free manner. In cases where the object is firmly
grasped and moves rigidly with the end-effector
(e.g., no slippage), a common assumption in prior
work [16, 25, 44, 45], the end-effector pose can be
calculated from the object pose. The object-specific
firm grasps are selected from the object point cloud
using a grasp proposal model, as shown in Fig. 3.
At each timestep ¢, we find the rigid transformation

(R, t!) that aligns the initial keypoints {f!}X, to the
current one {f/}X . This is solved using the Kabsch
algorithm [34], which finds the optimal rotation R’
that minimizes the sum of squared errors:

K
R' = argmin Z IR(E! =) = (€ =cHIE (1)
ReSO(3) =1

where ¢! and ¢’ are the masked point cloud cen-
troids at the first and current timesteps, respec-
tively. This optimization can be solved efficiently
using Singular Value Decomposition (SVD). Once
the rotation is found, the translation is computed as
t' = ¢! — R’cl. The object pose at timestep ¢ can be
represented as a homogeneous transformation ma-
trix T!, ; € SE(3), constructed from R and t'. The
resulting sequence of 6D object poses is converted
into an end-effector trajectory by applying a grasp
transformation, Tg;4sp, obtained from a grasping net-
work [52, 53]. The target end-effector pose at each
timestep is then:

Tie = Trt)bj 'TgraSP' (2)

This Cartesian pose is converted to joint commands
via trajectory optimization for execution by the
robot’s controller.

3.2.2. Deformable Object Manipulation

Unlike rigid objects, deformable objects have com-
plex dynamics that cannot be described by a simple
rigid transformation. NovaFlow can be naturally ex-
tended to handle deformable objects, with the 3D
object flow F serving as a dense tracking objective
for model-based planning. Specifically, we employ
a particle-based dynamics model fj to predict the
object’s future state, where 0 represents the learn-
able parameters of the model. The state of the ob-
ject at time ¢ is represented by a set of N, particles

Si = {s} }?i”l. The dynamics model predicts the next
state based on the current state and a robot action
a;: S = fe(St, ay).
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Conventional methods for deformable manip-
ulation often define a cost function using a
correspondence-free metric, like the Chamfer dis-
tance, to a single goal state Sg,q [35, 36, 54-56].
Our actionable 3D object flow F = {F'}L,, where

N, .
F' = {f!},%, allows us to define a cost function based
on the sum of squared Euclidean distances, leverag-
ing the explicit point-wise correspondences from the
flow:

NP
C(SLFH =) st — £ (3)
i=1
This formulation has two potential advantages.
First, using point correspondences may create
a better-conditioned optimization landscape, as
correspondence-free metrics can be susceptible to lo-
cal minima. Second, tracking a dense flow provides
intermediate targets along a desired motion path,
rather than relying on only a final goal configura-
tion.

We then frame the control problem as a Model
Predictive Control (MPC) task. At each timestep ¢,
we solve for an optimal sequence of actions A} =
{aj,...,a},y_,} over a planning horizon H by mini-
mizing the cumulative cost:

JHH-1
A} = argmin Z (s, 7)), (4)
Ay j=t

subject to the dynamics constraints Sj11 = f5(S;, a;).
We then execute the first action a} and repeat the
optimization at the next timestep.

Trajectory optimization. To enable smooth and
collision-free motion, we additionally incorporate
trajectory optimization to refine the sequence of
actions. We formulate the trajectory generation
as a non-linear least-squares problem. The goal
is to find an optimal sequence of joint configura-
tions Q = {qo, q1, ..., g7—1} that minimizes a sum-
of-squares objective function. The trajectory is ini-
tialized by linearly interpolating between start and
end configurations, gstartx and gend 1k, Which are pre-
calculated using an IK solver using the end-effector
pose. The optimal trajectory Q* is found by solving
the constrained non-linear optimization problem:

inn WsCsmooth + WrCrest,  Subject to

9o = (start,JK and dT-1 = {end,IK>
Gmin < Gt < Gmax, VI €1{0,..., T — 1},
ds(qr, Gr+1, O)) > €safe,  V1,VO; € Obstacles.

®)

In this formulation, the objective function seeks
to minimize a weighted sum of the motion smooth-
ness cost (Csmooth) and the rest pose regularization
cost (Crest). Constraints in the optimization include:
(1) start and end constraints, meaning the trajec-
tory’s start and end configurations (qo and gqr-;)
must exactly match the predefined goals (gstart, 1k
and gend, 1x); (2) collision avoidance, by enforcing the
signed distance, ds, between the robot and any obsta-
cle to remain greater than a safety margin, €g¢e, at all
times; (3) joint limits, ensuring the robot’s physical
joint position and velocity limits throughout the en-
tire motion. We treat these constraints as cost terms
and use the Levenberg-Marquardt solver to solve the
non-linear least-squares problem.

4. Experiments

We aim to demonstrate the generalizability of No-
vaFlow across different object types and embodi-
ments and to show the importance of each compo-
nent in our framework. We evaluate the framework’s
ability to execute a broad range of manipulation
tasks involving rigid, articulated, and deformable
objects across embodiments without requiring task-
specific demonstrations or additional fine-tuning.

4.1. Implementation Details

We implement NovaFlow with modular, swappable
components. For video generation, we use the open-
source model Wan [13], which produces 41 frames
per task (16 FPS, 1280x720). We estimate depth
with MegaSaM [30] using calibrated intrinsics, track
3D points with TAPIP3D [31], and ground objects
via Grounded-SAM2 [58] (Grounding DINO [32] +
SAM2 [33]). We use a trained PhysTwin [35] model
to predict particle dynamics for deformable objects.
All modules are drop-in replaceable with newer mod-
els, improving speed and robustness, which is an-
other benefit for our modular framework.

4.2. Real-World Experiments and Evaluation
Tasks

We evaluate NovaFlow on a Franka arm with a
Robotiq-85 gripper for table-top manipulation and
a Spot quadruped for mobile robot manipulation.
For rigid and articulated objects, we use a single Re-
alSense D455 depth camera as input. For deformable
objects, we use three synchronized cameras (as re-
quired by PhysTwin [35]), though a single-view
setup is also possible [56].
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Figure 5: Experiment results. We compare against Diffusion Policy (DP) [57] trained using 10 and 30 demonstrations,
inverse dynamics model (IDM) from UniPi [26], AVDC [29], and VidBot [47] in real-world tabletop manipulation tasks.

We categorize our tasks by the object type in-
volved as rigid (R), articulated (A), and deformable

(D):

+ Hanging a mug (R): hang a mug on a wooden
rack, requiring accurate relative pose placement
for the handle to pass through the wooden stick
on the rack.

« Inserting a block (R): insert a yellow block
into a hole in a board, a task similar to peg-in-
hole that requires accurate insertion skills.

« Placing a cup on a saucer (R): place a cup on
a saucer, a task demanding accurate placement
skills.

« Watering a plant (R): pour water from a green
cup into a plant pot, requiring language under-
standing and manipulation skills.

« Opening a drawer (A): open a drawer, requir-
ing a precise understanding of its articulation.

« Straightening a rope (D): straighten a curved
rope, which requires understanding the dynam-
ics of a deformable object.

During evaluation, we randomize the object place-
ment after each trial. We report the quantitative and
qualitative results in Fig. 5 and Fig. 6.

4.3. Comparison with Baselines
We compare NovaFlow against two groups of base-
lines. (+) denotes methods requiring external train-
ing data, while (*) denotes baselines adapted to fit
our pipeline.

Demo-free, zero-shot baselines (similar to
ours):

« AVDC [29] (*): Extracts object-centric motion
using optical flow. We adapt it to our pipeline
by applying it directly to generated videos.

» VidBot [47]: Learns flow from large-scale hu-
man interaction datasets to model affordances.

Data-dependent baselines (require demon-
strations):

« Diffusion Policy (DP) [57] (+): Diffusion
policy serves as an imitation policy baseline
trained under very few demos for a single task.
We train with 10 and 30 demonstrations per
task, using the same single-view camera RGB
input as our approach.

- Inverse Dynamics Model (IDM) [26] (+):
IDM was originally designed to train together
with a fine-tuned video generation model using
in-domain demonstrations. Since video fine-
tuning is outside our scope, we trained the IDM
model with the 30 demonstrations previously
used in DP training to convert generated robot
task-solving videos (from Wan2.1) into robot
actions.

NovaFlow achieves the highest success rates
across tasks among zero-shot methods and also sur-
passes data-dependent baselines trained with 10-30
demonstrations, as shown in Fig. 5 (with 10 trials
for each task). AVDC(*) performs competitively
on affordance-like tasks but struggles with precise,
long-horizon placements. In our setup, it distills mo-
tion from 2D optical flow, lacking 3D awareness and
long-term coherence under occlusion. These limi-
tations, as also noted in the AVDC paper, cause the
method to struggle with tasks requiring accurate
placement and rotation-heavy motions. VidBot ex-
cels on affordance-centric, articulated interactions
(e.g., “open drawer”) but fails when tasks require ob-
ject—object relations and precise relative pose place-
ment. This matches our diagnosis that its training
emphasizes object-affordance understanding rather
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Figure 6: Real-world manipulation experiments. NovaFlow is versatile and supports cross-embodiment manipu-
lation, which we use to manipulate rigid, deformable, and articulated objects using tabletop and mobile manipulator.

than modeling multi-object constraints. For DP(+),
despite per-task training (an easier setting that by-
passes language understanding), it still shows poor
generalization from a few examples, especially be-
cause our evaluations are randomly sampled and not
drawn from the training distribution. The main issue
for IDM(+) is the domain shift between its training
and test data. The inverse dynamics model learns
from real-world robot demos, yet it must interpret
generated videos whose motion is not always kine-
matically perfect or consistent. Consequently, the
generated videos are out-of-distribution, causing the
model to fail even if the video’s high-level action
seems semantically reasonable.

Overall, methods that (i) lack an actionable 3D
representation (AVDC, VidBot) or (ii) rely on small,
task-specific robot datasets (DP, IDM) fail to pro-
vide zero-shot autonomous task-solving. Distilling
a dense, actionable 3D object flow and decoupling
understanding from control is critical for zero-shot
generalization.

4.4. Ablation Studies and Failure Analysis

Here we discuss some of the design choices in No-
vaFlow’s submodules. For video generation, we com-
pare the current Wan 2.1 model to the closed-source
model Veo [59], which produces 8 s clips (24 FPS).
Prompt extension is utilized for better controllability.
For precise placement tasks (e.g., mug on rack and
block insertion), we optionally condition on a goal
image (FLF2V) instead of 12V.

We analyze the failure cases of NovaFlow in Fig. 7,

(a)

Missed Graép Inaccurate Trajectory

(b)

Task Success

Grasp Success
Total Flow Success 51

60

Execution Failure B
7

Grasp Fail
Video Failure _ rasPRal
2

Tracking Failure _
2

Figure 7: Failure analysis. (a) Examples of video, track-
ing, grasp, and execution failures. (b) Failure cause distri-
bution.

identifying four primary failure modes. Video fail-
ure occurs when the generative model produces
content that is not physically plausible, lacks 3D
consistency, or violates the user’s instructions; our
rejection sampling with a VLM mitigates but does
not eliminate this. Tracking failure results from
inaccuracy in 3D point tracking, often caused by
textureless surfaces, heavy occlusions, or accumu-
lated inconsistencies inherited from the video model.
Grasp failure happens when the robot fails to se-
cure the object correctly (e.g., bad approach, missed
grasp, and slip). Finally, execution failure encom-
passes errors during trajectory execution, such as
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Table 1: Effect of goal image on block insertion task.

Condition Video Success Task Success Time (s)
w/ Goal Image (Wan2.1) 46% 80% 612
w/o Goal Image (Wan2.1) 15% 40% 612
w/o Goal Image (Veo) 75% 80% 20

Table 2: Runtime analysis. Time is measured in seconds.

MegaSaM TAPIP3D SAM2 Total (Veo) Total (Wan)
Time 100 5 8 133 725

collisions, joint limits, or an inability to follow the
planned path accurately. Our analysis reveals that
most failures occur in the last mile: grasp and exe-
cution are the most frequent, suggesting that while
the upstream flow estimation is relatively robust,
physical interaction remains the bottleneck. This is
similar to the sim-to-real gap in simulation-based
training. To address these limitations, future work
could focus on integrating a closed-loop feedback
system to enable dynamic replanning and refine the
generated flow in response to observations.

We investigate the effect of a goal image on the
block insertion task requiring millimeter-level pre-
cision (Tab. 1). We use two metrics: Video Success
Rate, the percentage of generated videos with a valid
actionable flow, and Task Success Rate, the execu-
tion success of a flow selected by a VLM after rejec-
tion sampling. For each trial, we synthesize eight
videos, from which the VLM selects the best for ex-
ecution. Our results show that omitting the goal
image significantly impairs the performance of the
open-source Wan2.1 model. While VLM rejection
sampling improves the final success rate, the drop re-
mains substantial. In contrast, the closed-source Veo
model proves more robust, outperforming Wan2.1
and achieving a high task success rate even without
a goal image.

4.5. Runtime Analysis

We deploy NovaFlow on a single NVIDIA H100 GPU,
and a complete flow generation takes around 2 min-
utes end-to-end (Veo). We report per-module tim-
ings in Tab. 2 to guide replacements and optimiza-
tion. The dominant time-consuming modules are the
video generation and 3D lifting modules. For video
generation, closed-source models are usually much
faster in time but more expensive in cost.

5. Conclusion

We introduced NovaFlow, a demonstration-free
framework for autonomous manipulation that trans-
lates natural language commands into robot actions

by leveraging the commonsense knowledge embed-
ded in large-scale video generation models. Our
key insight is to distill generated task-solving videos
into an actionable 3D object flow, an intermediate
representation that decouples high-level task under-
standing from low-level robot control. This modu-
lar design enables NovaFlow to handle rigid, articu-
lated, and deformable objects across different robot
embodiments without requiring any task-specific
training or demonstrations. Our real-world exper-
iments show that NovaFlow not only outperforms
other zero-shot methods but also surpasses imitation
learning policies trained on dozens of demonstra-
tions.

Despite its success, our failure analysis reveals
that the primary bottleneck is the physical execu-
tion phase, particularly in grasping and handling un-
expected dynamics. This highlights a gap between
the open-loop plan generated from video and the
complexity of real-world interaction. A promising
direction for future work is to develop a closed-loop
system where real-time feedback from the environ-
ment is used to refine or replan the generated flow,
making the system more adaptive and robust to un-
foreseen challenges.
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Appendices

A. Video Generation

In this section, we provide additional details on the
video generation models, prompt engineering tech-
niques, and the specific prompts used in our experi-
ments.

A.1. Wan2.1

Wanz2.1 is the latest open-source video generation
model from Alibaba at the time of this work. We note
that a newer version, Wan2.2, was released recently
but does not support all the modes of Wan2.1 that
we require. Following the official recommendation,
we use Chinese prompts, which we found to yield
better results than English prompts.

For Wan2.1, we use its Image-to-Video (12V) model
for standard video generation and its First-Last-
Frame-to-Video (FLF2V) model when conditioning
on a goal image. We generate 41 frames for each
video at a resolution of 1280x720 and a frame rate of
16 FPS. We use their UniPC sampler with 40 sampling
steps, a noise shift parameter of 5.0, and a guidance
scale of 5.0.

A.2. Veo

We also experimented with Veo, a closed-source
model from Google. At the time of our experi-
ments, the model supported 12V generation but not
goal-image conditioning. Specifically, we used the
veo-3.0-generate-001 model via the Ver-
tex Al APL. We generated 8-second videos' at a res-
olution of 1280x720 and a frame rate of 24 FPS. To
maintain consistency with Wan2.1, we downsampled
the generated videos to 41 frames.

Pricing for the Veo model is subject to change. At
the time of writing, the cost was $0.20 per second of
generated video (e.g., $1.60 for an 8-second clip).

A.3. Prompt Engineering

To improve the quality and controllability of the
generated videos, we employ prompt extension, a
technique where a simple instruction is automati-
cally enriched with additional details about style,
composition, and action.

For Wan2.1, we adapt its official prompt extension
script. We use the prompt template from the official

'During our experiments, the model only supported 8-
second video generation. It now also supports durations of
4 and 6 seconds.
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repository and pass it to the Gemini 2.5 Pro model
to generate the extended Chinese prompt.

For Veo, we utilize its native prompt enhancement
feature available through the Vertex AI API, which
automatically refines the input prompt for improved
generation quality.

A.4. Generation Prompts

Below, we provide the original and extended prompts
used for each task, along with the corresponding
initial image from the robot’s perspective.

Figure 8: Initial observation of the drawer open task.

—HAAFIEREHELTF, IR HRHE
MBI - MEMTESITF, BEA
SHEREN - AF AN LEEME
£F.

LEARK, —RAFIMER GHREET,
REA ST A A PR Bz H - il
FEITEIRNESITIT, MEEFLE, A
FH A B e B E 1

R EESLEFE L, HRE
RERRATEE SR . BT
it EE

A human hand grasps a black drawer han-
dle and smoothly pulls the drawer out. The
drawer should open in a straight line without
moving forward or backward. The human
hand should not visually obscure the drawer

handle.


https://github.com/Wan-Video/Wan2.1/blob/main/wan/utils/prompt_extend.py
https://github.com/Wan-Video/Wan2.1/blob/main/wan/utils/prompt_extend.py
https://github.com/Wan-Video/Wan2.1/blob/main/wan/utils/prompt_extend.py
https://github.com/Wan-Video/Wan2.1/blob/main/wan/utils/prompt_extend.py
https://github.com/Wan-Video/Wan2.1/blob/main/wan/utils/prompt_extend.py

NovaFlow : Zero-Shot Manipulation via Actionable Flow from Generated Videos

Figure 9: Initial observation of the hang mug task.

—HARFEENTHELEERRL .
AHIF AR LB o

TWTIEERY, —RFERF—ITHE
FRTH A B B AR B A M R AC i S 3R
£ - FAIN BRI R H B -
B RFFEE, A TR, AR
TWER, B TIREEERL. B
2N RS R, =i T
BURANANTI - BN RIAR, RHYik
I

A human hand picks up the cup and hangs it
on the wooden stand. The human hand does
not visually obstruct the cup.
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Figure 10: Initial observation of the cup on saucer task.

—RAAFEREER/ T, 28R, &2
L 1 AN RS A Rl

FENME, —RAAFMHE, ZREGH
AABERNMEE M T, H et
- B, AFRITHLEE, H&IE8
BEhEAM, FH TR EE— D
BWEEET L. BOdEHRRY, 5%
IR A AR, I T YRR RS 44
TIAEA IR HOS RE -

A human hand picks up the small blue cup,
lifts it up, and gently places it on its red plate.
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Figure 11: Initial observation of the block insertion task.

—HAAFERHAASR, HR{FEEFBEA

BEERPETHAL .. BRRMIZLL
THRIE T . AFASEMY LEEHER
B

BEERECEREL, —RAAFEE—D
WEAR, KR EREBREELN—
AN E T RE IR T AL - ZEIEN
WEHRIEA LR, FE MEAET T
OIFR - BT, AFRARFER
BITR LTS, BRI . EEEREIRE
GiA, TR AN FLIR B 4 SR 3
8. BEKISE, EHETH -

A human hand picks up the yellow block
and inserts it precisely into the center of the
plate with the blue block. The yellow block
should rise first and then fall. The human
hand should not visually obscure the yellow

block.

16

Figure 12: Initial observation of the water plant task.

—RAANFIMELEARLEKE, RFH2
2, ReFRBEEDGK . BB
REFFE L . AFASENE BT

MR, —RAFPRFRELTMN, S
R, R E AR ERRENMEGEK . B
RAVOEN B, I N MR
EEYE, KEETEFETR, EHH
%gwogﬁﬁﬁiﬂm—ﬂﬂ&@ﬁi
Rtk

A human hand grasps the green water cup on
the left, lifts it, and steadily waters the plant.
The camera remains stationary throughout.
The hand does not visually obscure the cup.
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Figure 13: Initial observation of the open lid task.
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A human hand grasps the transparent lid of
a pot and lifts it straight up. The camera re-
mains stationary. The hand does not visually
obscure the lid.
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Figure 14: Initial observation of the straighten rope task.
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A hand slowly pushes the bent rope into a
straight line.
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Figure 15: Comparison of the depth maps before (top) and after (bottom) scaling. The depth maps are
visualized in the jet color map, where the colormap range is obtained from the ground-truth depth map.

B. Depth Estimation

We use the implementation of MegaSaM [30] from
TAPIP3D [31] for depth estimation. Specifically, we
use the MoGe [60] model to estimate the per-frame
depth map. Instead of estimating the camera intrin-
sics, we use the ground-truth calibrated intrinsics
from our camera. The estimated depth maps are
then postprocessed by bundle adjustment and consis-
tent video depth (CVD) [61] optimization following
CausalSAM [62].

Even after these postprocessing steps, the esti-
mated metric depth maps are still ambiguous. There-
fore, we opt to use the initial ground-truth depth map
as the reference depth map for calibration. Specif-
ically, we compute the scaling factor between the
median depth of the first estimated frame and the
initial ground-truth depth map. We then multiply
the estimated depth maps by this scaling factor to
obtain the calibrated depth maps.

After applying the scaling factor (see Fig. 15), the
calibrated depth maps are more consistent with the
ground-truth depth map and more temporally consis-
tent. We find the calibrated depth maps are accurate
enough to support precise manipulation tasks such
as the block insertion as demonstrated in the figure,
which requires millimeter-level precision.

C. 3D Point Tracking

We leverage TAPIP3D [31] for 3D point tracking,
which tracks 3D points in the XYZ 3D coordinate
space instead of the UVD 2D space. We generate
query points on the first frame using uniform grid
sampling of 32 x 32 points. We set the tracker itera-
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tions to 6.

D. Object Grounding

The previous step produces dense 3D tracking for
the entire image. We need to ground the points
to the target object. We use the Grounded-SAM2
pipeline [58] for object grounding, which combines
Grounding DINO [32] and SAM2 [33]. We pass the
query object name to the pipeline to extract the ob-
ject mask throughout the video. Then, we use the
mask video to filter the 3D tracking points and only
keep the points that are visible throughout the video.
We set the bounding box threshold to 0.25 and text
threshold to 0.3. We select the bounding box from
Grounding DINO with the highest score and set it
as the input prompt to SAM2 to extract the object
mask.

E. Rejection Sampling

After obtaining the 3D object flow, we can project
the 3D flow onto the first frame to obtain the 2D ob-
ject flow. We then pass object flow images to Gemini
2.5 Pro to filter out hallucinations, such as generative
artifacts and implausible motions, that may be un-
avoidably introduced by the video generation model.
We find this strategy to be effective and benefits from
scaling the execution-time computation resources.
For example, we can generate 8 candidates in parallel
and select the best one from the 8 candidates using
8 H100 GPUs.

Along with the following system prompt, we also
provide the flow image and the task description used
to generate the video to clarify our expectation of
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the task.

You are a flow analysis expert. Analyze the
stitched flow image and evaluate which flow
visualization (marked with IDs in the top-left
corner) represents the most reasonable and
natural object motion. The flow is a manual
annotation overlay on the image to indicate
the intended object motion. Consider: 1. Con-
tinuity and smoothness of the flow 2. Natu-
ral motion patterns 3. Proper object iden-
tification (avoid flows that spread through-
out the entire image) 4. Alignment with the
task requirements You should reject images
that show flows throughout the image (which
means the object is not identified). Provide
a clear recommendation on which flow ID is
best and why.

F. Trajectory Optimization

During execution time, we refine the sequence of
actions using trajectory optimization to find an op-
timal, collision-free, and smooth sequence of joint
configurations Q = {qo, q1, ..., gr—1}. The trajectory
is initialized by linearly interpolating between start
and end configurations, gstart1x and gendx, which
are pre-calculated using an IK solver. The optimal
trajectory Q* is found by solving the following con-
strained non-linear optimization problem:

min

Q

WsCsmooth + WrCrest,  Subject to

and dT-1 = GendIK>
vt €{0,..., T — 1},
vt,VO; € Obstacles.
(6)
This optimization problem is solved using a
non-linear least-squares algorithm (Levenberg-
Marquardt). The constraints for joint limits and col-
lision avoidance are incorporated as high-weight
penalty terms in the objective function, while start
and end configurations are hard constraints.

qo = (start,IK
Gmin < qt < qmax>
ds(qta qi+1» Oj) 2> Esafes

Objective and Penalty Terms

Smoothness Cost (Cgnootn)- This cost penalizes
non-smooth motion by minimizing the squared
norms of joint velocity (q), which is approximated us-
ing finite differences. In practice, this is implemented
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as a cost on the deviation from the previous joint
configuration, encouraging temporal smoothness:

Csmooth = Z Ws”qt - qt—1”2- (7)

t

Rest Position Cost (Crest). This is a regulariza-
tion term that encourages the trajectory to remain
close to a default home configuration, gyest:

Crest = Z Wr”qt - qrest||2- (8)
t

Joint Limits Penalty. This term penalizes any
violation of the minimum (g, ) and maximum (gpmax)
joint limits:

Climits = Z Wl(” max(0, q; — qmax)nz
' 9)
+ | max(0, gimin — go)I?)-

Collision Avoidance Penalty. This term en-
forces a safety margin, €g,¢, from world obstacles,
Oj, by applying a hinge loss on the signed distance,
d;, of the robot’s swept volume:

Z Wwe - maX(O, €safe — ds(qt, qi+1, Oj))z‘
t’j

Ccollision

(10)
We implement the optimization using PyRoki [63]
and Jax. The cost terms are weighted as follows. The
joint limit penalty is set to a high value of w; = 100.0
to act as a hard constraint. The smoothness weight is
w;s = 10.0, the collision penalty weight is w. = 15.0,
and a small regularization is applied with a rest pose
weight of w, = 0.1.



NovaFlow : Zero-Shot Manipulation via Actionable Flow from Generated Videos

Figure 16: Real-world manipulation experiments. From top to bottom: block insertion, rope straightening, cup
on saucer, open drawer, hang mug, open lid, water plant, and open drawer using the Spot.

G. Experiments nipulator. It is also viewpoint-agnostic and can be
deployed on a novel platform after performing hand-
eye calibration.

We show more visualizations of the real-world ma-
nipulation experiments in Fig. 16. NovaFlow is ver-
satile and supports cross-embodiment manipulation,
which we use to manipulate rigid, deformable, and
articulated objects using tabletop and mobile ma-
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